
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 05: Useful Haskell Syntax, HO Programming Continued
o Goodbye to Bare Bones Haskell: Built-in syntax for lists & tuples
o Lambda expressions and Beta-Reduction
o Let and Case Expressions

Reading: Hutton Ch. 4 & 7

You should be starting to look through the Standard Prelude in Appendix
B, particularly the list processing functions!

Useful Haskell Syntax: Built-In Types
We have used Bare Bones Haskell notation for Lists, Pairs, and Triples in order to
emphasize the importance of pattern-matching in defining functions. However,
enough is enough! Here is a more convenient syntax which is built into the basic
Haskell syntax (and not just implemented as functions in the Prelude):

BB Haskell Flesh and Blood Haskell

Useful Haskell Syntax: Built-In Types
We have used Bare Bones Haskell notation for Lists, Pairs, and Triples in order to
emphasize the importance of pattern-matching in defining functions. However,
enough is enough! Here is a more convenient syntax which is built into the basic
Haskell syntax (and not just implemented as functions in the Prelude):

BB Haskell Flesh and Blood Haskell

Built in to the Prelude exactly as we presented it:

Bool, True, False, &&, ||, not

Built in types Integer, Double,

Main> 5 + 2
7

Main> 2039482039848029348 * 2828383838
5768438039397438184032877624

Useful Haskell Syntax: Built-In Tuples
BB Haskell

Main> P 3 True
P 3 True

Main> (P 4 (P True (-9)))
P 4 (P True (-9))

Main> (T 3 5 9)
T 3 5 9

Main> (T 9 False 2)
T 9 False 2

Main> fst (P 3 True)
3

Main> snd (P 3 (P True 2))
P True 2

Main> toLeft (P 4 (P True (-9)))
P (P 4 True) (-9)
Main> p2T (P 4 (P True (-9)))
T 4 True (-9)

Useful Haskell Syntax: Built-In Tuples
BB Haskell Flesh and Blood Haskell

Main> P 3 True
P 3 True

Main> (P 4 (P True (-9)))
P 4 (P True (-9))

Main> (T 3 5 9)
T 3 5 9

Main> (T 9 False 2)
T 9 False 2

Main> (3,True)
(3,True)

Main> (4,(True,(-9)))
4 (True,(-9))

Main> (3,5,9)
(3,5,9)

Main> (9,False,2)
(9,False,2)

Main> fst (3,True)
3

Main> snd (3,(True,2))
(True,2)

Main> toLeft (4,(True,(-9)))
((4,True),-9)
Main> p2T (4,(True,(-9)))
(4,True,-9)

Main> (2,3,True,5,’a’,7,4,”hi”,5)
(2,3,True,5,’a’,7,4,”hi”,5)

Provided in
Prelude

Tuples can be
any length,
but fst and
snd only work
on pairs.

Useful Haskell Syntax: Built-In Lists
BB Haskell Flesh and Bones Haskell

Built in as part of syntax!

Main> []
[]

Main> 3:9:[]
[3,9]

Main> 3:[9]
[3,9]

Main> [3,9]
[3,9]

Main>(Cons 3 (Cons 9 Nil))
Cons 3 (Cons 9 Nil)

Main> head (Cons 3 (Cons 9 Nil))
3

Main> tail (Cons 3 (Cons 9 Nil))
Cons 9 Nil

Main> length (Cons 3 (Cons 9 Nil))
2

Main> head [3,9]
3

Main> tail [3,9]
[9]
Main> length [3,9]
2

Provided in
Prelude

Useful Haskell Syntax: Built-In Lists
Start to become familiar with the list-processing functions in the Prelude,
there are many useful functions already defined! See Hutton pp.285 – 287.

Main> [0,1,2] ++ [3,4]
[0,1,2,3,4]

Main> last [0,1,2,3,4]
4
Main> init [0,1,2,3,4]
[0,1,2,3]

Main> take 3 [0,1,2,3,4]
[0,1,2]
Main> drop 3 [0,1,2,3,4]
[3,4]
Main> takeWhile (<3) [0,1,2,3,4]
[0,1,2]

Main> dropWhile (<3) [0,1,2,3,4]
[3,4]

Many more advanced functions can be found in Data.List.

Main> splitAt 3 [0,1,2,3,4]
([0,1,2],[3,4])

Main> replicate 5 1
[1,1,1,1,1]
Main> [0,1,2] ++ [3,4]
[0,1,2,3,4]

Main> reverse [0,1,2,3,4]
[4,3,2,1,0]
Main> map (^2) [0,1,2,3,4]
[0,1,4,9,16]
Main> filter even [0,1,2,3,4]
[0,2,4]

Main> concat [[0],[1,2],[3,4]]
[0,1,2,3,4]

Useful Haskell Syntax: Characters and Strings
Characters (Hutton p.282)

Main> 'a'
'a'

Main> ['h','i','!']
"hi!”

Main Data.Char> isLower 'a'
True

Main Data.Char> isUpper 'a'
False
Main Data.Char> isAlpha 'a'
True

Main Data.Char> isDigit 'a'
False

Main Data.Char> ord 'a'
97
Main Data.Char> chr 97
'a'
Main Data.Char> digitToInt '9'
9
Main Data.Char> intToDigit 4
'4'

Main Data.Char> toUpper 'a'
'A'
Main Data.Char> toLower 'A'
'a'

Main Data.Char> nextChar 'a'
'b'

Useful Haskell Syntax: Characters and Strings
Strings are simply lists of Characters (Hutton p.282)

Main> ['h','i','!']
"hi!”

Main> "hi " ++ "there" ++ "!"
"hi there!"

Main> "hi there" !! 3
't'

Main> take 5 "hi there!"
"hi th”

Main> words "hi there!"
["hi","there!"]

Main> import Data.Char
Main Data.Char> map toUpper "hi there!"
"HI THERE!"

Any list function can be used on
Strings. Check out Data.List!

This nifty function is provided in
the Prelude

Case Expressions
A very useful kind of conditional expression is the case expression:

case expression of pattern -> result
pattern -> result
pattern -> result
...

In other languages, the case statement is an alternative to a long nested if-
then-else, but in Haskell (of course!) it is more powerful, as it does pattern
matching:

describe :: [a] -> String
describe [] = "empty"
describe [x] = "singleton"
describe _ = "big!"

*Main> describe [4]
"singleton"

describe :: [a] -> String
describe xs =

case xs of [] -> "empty"
[x] -> "singleton"
_ -> ”big!"

Case Expressions
This solves the problem that lambda expressions can pattern match, but
not do multiple patterns:

describe :: [a] -> String
describe = \xs -> case xs of

[] -> "empty"
[x] -> "singleton"
_ -> ”big!"

Let Expressions in Haskell
In Haskell we create local variables using let:

(let x = <expr1> in <expr2>)

cylinder r h =
let sideArea = 2 * pi * r * h

topArea = pi * r ^2
in sideArea + 2 * topArea

let sq x = x * x in (sq 5, sq 3, sq 2)

=> (25,9,4)

let x = 5
in let y = 2 * x

in let z = x + y
in (\w -> x * y + z) 10

=> 65

Scope of local variables

